Microrreactor para las pilas de combustible
Investigadores de la Universidad del País Vasco y otros centros españoles han diseñado un diminuto reactor formado por microcanales que favorece la conversión de metanol en hidrógeno. Este es un elemento difícil de almacenar pero esencial en las pilas combustibles, posibles sustitutas de las baterías.
E
Las pilas de combustible son sistemas llamados a sustituir las baterías de teléfonos móviles, ordenadores portátiles y vehículos. Convierten en electricidad la energía que surge al combinar oxígeno e hidrógeno. Sin embargo, actualmente existen dificultades para almacenar el hidrógeno de forma segura, aunque una buena opción es utilizar una infraestructura que genere hidrógeno gaseoso en la misma pila.
En estos casos, normalmente se emplea el metanol como materia prima. Por ejemplo, en vez de alimentar los vehículos o teléfonos mediante hidrógeno, es posible añadirles metanol, para que se convierta en hidrógeno en función de las necesidades del aparato. Ahora investigadores de la Universidad del País Vasco (UPV/EHU) han desarrollado un dispositivo para mejorar esta tarea.
Han diseñado una infraestructura especial: un reactor formado por microcanales. El microrreactor resultante es cien veces más pequeño que un sistema reactor convencional. El tamaño del reactor es muy importante en el caso de todos esos aparatos móviles. “No es tarea fácil desarrollar un reactor compuesto de microcanales” ha explicado Oihane Sanz, investigadora del Departamento de Química Aplicada de la UPV/EHU. “Es indispensable realizar con sumo cuidado la elección de los materiales, la mecanización de los microcanales, el montaje del sistema y el recubrimiento catalítico, entre otros”.
Según han observado, esos reactores compuestos de microcanales colaboran en mejorar la transferencia de calor para convertir el metanol en hidrógeno. Gracias a ello, la temperatura de reacción se controla de forma adecuada, y, por lo tanto, se minimizan los puntos calientes en los que surge el carbono monóxido (CO). Si junto al hidrógeno se genera CO, puede contaminar la pila de combustible y no funcionar correctamente, y, por tanto, se detiene la producción de energía.
Un catalizador estable
Del mismo modo, elegir un catalizador y utilizar un adecuado método de colocación son condiciones indispensables para que la reacción se lleve a cabo de la forma más eficiente. “Una del las mayores dificultades de esos reactores formados por microcanales consiste en introducir el catalizador en esos canales tan pequeños. Es por ello que el objetivo de este trabajo de investigación ha sido diseñar un catalizador estable, e instalarlo en el sistema de la mejor manera posible”, explica Sanz.
En los procesos de consecución de hidrógeno partiendo de metanol, se emplean catalizadores de paladio (Pd), como se ha hecho en este caso. En concreto, han utilizado el PdZnO. A menudo, "al integrar los catalizadores en reactores formados por microcanales, se pierden las características de los catalizadores. Sin embargo, con los catalizadores empleados en este estudio, además de mantener sus características, hemos conseguido llevar a cabo el proceso fácilmente”, añade.
Con una infraestructura y un catalizador adecuados, el microrreactor diseñado produce 30 hidrógeno líquido/h.g; la conversión de metanol es de un 95%, y la de carbono monóxido (CO) inferior a un 1%. “Es muy importante controlar la producción de carbono monóxido, ya que puede contaminar la pila de combustible” destaca Sanz.
“Se han documentado sistemas que producen una mayor cantidad de hidrógeno (12-50 lH2/h.g), pero la conversión de metanol es menor (de un 80%, y, en algunos casos, de un 4%), y, además, se generan productos marginales” añade Sanz, que destaca como este diseño “nos permite desarrollar un proceso más limpio, más seguro y con menos costes”.
La investigación ha sido desarrollada por el departamento de Química Aplicada de la Facultad de Ciencias Químicas de la UPV/EHU, dirigida por el catedrático Mario Montes. También han colaborado el grupo dirigido por el catedrático José Antonio Odriozola (ICMS, Centro Mixto US-CSIC) de la Universidad de Sevilla, y el grupo dirigido por los catedráticos Gurutze Arzamendi y Luis M. Gandia de la Universidad Pública de Navarra.
Referencia bibliográfica
F.J. Echave, O. Sanz, M. Montes. “Washcoating of micro-channel reactors with PdZnO catalyst for methanol steam reforming” Applied Catalysis A: General: 159 -167 2014.
Fuente: Agencia Sinc
Articulos Electrónica Relacionados
- C.O.M.M. BATT para monitorizar... Saft presenta en la feria MATELEC 2016 C.O.M.M. Batt, la primera aplicación del Internet de las Cosas (IoT) para baterías a bordo de níquel...
- Cargador rápido para vehículos... Ingeteam ultima el lanzamiento al mercado de su nuevo modelo de carga rápida multi-standard INGEREV® RAPID 50 para vehículos eléctricos...
- Células primarias de litio Ete... Saft ha ganado diferentes contratos para suministrar alrededor de cinco millones de sus células primarias de litio de su marca Eternacell a los principales fabr...
- Sistema EMIC de CONVEHIDOR y e... Saft Baterías ha presentado recientemente el Sistema EMIC, desarrollado por el Consorcio CONVEHIDOR y conocido por haber desarrollado baterías modulares para re...
- Baterías de níquel en el secto... El integrador de sistemas solares TSS4U seleccionó las baterías de níquel Sunica+ de Saft por su alta calidad, fiabilidad, capacidad de alta temperatura y por s...
- Un paso adelante para la utili... Una nueva patente presentada a finales del 2009 en nuestro país, y desarrollada tecnológicamente desde entonces, parece ser la clave para abrir definitivamente ...
- Módulos de Ni-MH de Saft para ... Saft presenta una gama de módulos de baterías recargables de Níquel-Metal Hidruros (Ni-MH) especialmente diseñados para satisfacer las necesidades de los sistem...
- Baterías Aluminio-aire para el... Las baterías Aluminio-aire tienen una de las más altas densidades de energía teóricas. Su uso está restringido a unos nichos de mercado muy específicos cuando s...
- Saft presenta nuevos productos... Saft, líder mundial en el diseño y fabricación de baterías industriales de alta tecnología, ha presentado una amplia gama de soluciones de baterías para el sect...
- Batería Uptimax como reemplazo... La nueva batería de tecnología de níquel Uptimax de Saft ofrece a los operadores un reemplazo directo de baterías de plomo-ác...
- Baterías de litio-ión para alm... Saft ha mostrado sus últimas tecnologías de litio-ión en baterías para el almacenamiento energético y energía de backup en aplicaciones de telecomunicaciones en...
- Batería de litio-ion Xcelion 6... Saft presenta la batería Xcelion 6T™ para vehículos militares. La Xcelion 6T™ es una batería de repuesto de Litio-Ión (Li-Ion) para baterías de plomo que sumini...