Sensores

Tecnologías de sensado de temperatura

Inicio desactivadoInicio desactivadoInicio desactivadoInicio desactivadoInicio desactivado
 

El sensado de temperatura supone el último añadido a la funcionalidad que ofrece una lista de aplicación que crece con rapidez. Esto representa para los diseñadores, para una amplia variedad de productos, la posibilidad de elegir la tecnología de sensado de la temperatura. Para ello necesitan sopesar las ventajas y los inconvenientes de los nuevos sensores de temperatura basados en silicio, así como alternativas más convencionales como los termopares, termistores o detectores RTD (Resistive Temperature Detectors) para cada aplicación.
Tecnologiasdesensado1No hay duda que los sensores de temperatura de silicio están ganando terreno y hay buenas razones para ello. Son dispositivos sencillos que no exigen grandes conocimientos sobre diseño térmico y que al mismo tiempo integran funciones que aportan a los diseñadores la flexibilidad de incorporar más funciones a sus productos. Otras razones pueden ser un precio relativamente bajo, su huella reducida dentro de la solución completa de sensado de temperatura y su potencial para reducir el consumo de energía si se compara con otras tecnologías. Por otra parte, tal vez sea el hecho de que esta última generación de sensores de silicio alcance una precisión mucho más alta que las anteriores lo que podría inclinar la balanza a favor de la utilización de un sensor de silicio por primera vez. Sea cual sea la razón a la hora de valorar el sensado de temperatura con silicio, es importante conocer bien los tres tipos distintivos de sensores de silicio, su salida de tipo lógico, de tensión o en serie y las ventajas que aporta cada uno de ellos para una aplicación concreta.
Sensores de silicio con salida de tensión


El funcionamiento de un sensor de temperatura con salida de tensión es similar al de un termistor, que es probablemente el dispositivo más utilizado para el sensado de temperatura.


La resistencia del termistor varía con los cambios de temperatura. La resistencia de un termistor PTC (coeficiente de temperatura positivo) se verá incrementada cuando aumente la temperatura, mientras que la resistencia de un termistor NTC (coeficiente de temperatura negativo) disminuirá al aumentar la temperatura.


Por su parte, un sensor de temperatura con salida de tensión suministra una tensión de salida proporcional a la temperatura, con un coeficiente de temperatura típico de 6,25 mV/ºC, 10 mV/ºC o 19,5 mV/ºC. Los convertidores temperatura/
tensión pueden detectar un rango de temperaturas entre -55ºC y +150ºC con un offset de temperatura que permite leer temperaturas negativas sin necesidad de una tensión de alimentación negativa. Los valores de típicos de las corrientes de trabajo son del orden de decenas de microamperios, lo cual minimiza el autocalentamiento y maximiza la vida de la batería.


La utilización de un termistor conlleva ciertos inconvenientes si se compara con un sensor de temperatura de silicio con salida de tensión. El consumo de energía de la solución que incorpora el termistor puede ser varios órdenes de magnitud más elevado que con los sensores de temperatura más avanzados basados en silicio y el termistor no es lineal, por lo que el rango de temperaturas de ve limitado. Dependiendo del rango de temperatura de la aplicación, la solución que incorpora el termistor también necesitará una circuitería externa que puede añadir espacio a la placa y aumentar el coste total.
En cambio, las soluciones basadas en silicio son muy lineales sobre un rango de temperatura entre -55ºC y +150ºC, y ofrecen soluciones a partir de un encapsulado SC70. En conjunto, por tanto, la opción del silicio puede ofrecer una solución más pequeña, de menos coste y menor consumo que un termistor.


Sensores de silicio con salida lógica
Los sensores de temperatura con salida lógica funcionan generalmente como un termostato, notificando al sistema cuándo se ha alcanzado un límite máximo o mínimo de temperatura. En ocasiones se les denomina interruptores de temperatura, se pueden utilizar para conectar un ventilador o un aviso luminoso cuando se detecta unas temperaturas excesivamente alta o baja. Como la salida habitualmente no es fija, el interruptor puede apagarse cuando la temperatura caiga por debajo o aumente por encima de la temperatura establecida. Los sensores con salida lógica suelen tener histéresis integrada de unos pocos grados Celsius para evitar señales de rebote a la salida.


Tecnologiasdesensado2Con un termistor, una forma de implementarlo consiste en un circuito comparador. Sin embargo éste añadiría errores al sistema, como offset y deriva de offset desde el comparador, que se habría de resolver mediante el ajuste de los valores de las resistencias utilizadas en el circuito y con un solo ajuste de la temperatura para calibrar el circuito.


Una solución basada en silicio sería mucho más simple de realizar ya que el fabricante se encarga de realizar todo el ajuste y la calibración.
Sensores de silicio con salida serie


La forma más habitual de lograr medidas de temperatura con una alta precisión y muy repetibles ha consistido en utilizar termopares o RTD. Sin embargo, tal como demuestra la Figura 1, ambas soluciones puede suponer el desarrollo de circuitos grandes, caros y complejos para lograr la elevada precisión de temperatura o una alta resolución de medida.


En el sensado de temperatura con silicio son los sensores con salida serie los que logran la máxima precisión, integración y flexibilidad al tiempo que conservan la sencillez inherente de la solución de silicio. Los sensores con salida serie utilizan interfaces de dos o tres hilos para unirse al microcontrolador y generalmente incorporan un convertidor A/D que convierte la salida analógica del elemento de sensado interno en una salida digital. Un ejemplo de sensor de temperatura con salida serie es el MCP9804 de Microchip mostrado en la Figura 2. Este sensor digital de temperatura de alta precisión y alta integración logra una precisión típica de la temperatura de 0,25ºC y una resolución de medida seleccionable por el usuario entre 0,5ºC y 0,0625ºC en un minúsculo encapsulado DFN de 2 mm x 3 mm.


Muchos sensores de temperatura con salida serie también integran funciones programables por el usuario, como alertas en caso de subtemperatura o sobretemperatura y EEPROM integrada. Estas características pueden utilizarse para simplificar un diseño, incrementar su flexibilidad, mejorar la precisión del sensado de temperatura y reducir el coste total del sistema.


La limitación más habitual de los sensores de temperatura con salida serie, si se comparan con los RTD y los termopares, es su rango de temperaturas de trabajo. Los sensores de temperatura de silicio están especificados generalmente para trabajar entre -55ºC y +150ºC, mientras que RTD y termopares pueden proporcionar una solución precisa para unos centenares o un mar de miles de grados Celsius, respectivamente.


Conclusión
Todas las tecnologías de sensado de temperatura presentan ventajas e inconvenientes y no hay una única tecnología indicada para todas las aplicaciones de sensado de temperatura.


Para aplicaciones que trabajen con un rango limitado de temperaturas, los termistores pueden proporcionar una solución de bajo coste para el sensado de temperatura. Para una alta precisión superior a varios cientos de grados Celsius los RTD pueden ser una solución apropiada pero exigen un cuidadoso ajuste y calibración y pueden resultar más caros que las soluciones basadas en termistores o sensores de silicio. Si hay que medir temperaturas extremas, es probable que los termopares sean la solución más adecuada. Sin embargo, para la inmensa mayoría de las aplicaciones que no exijan medir un rango muy amplio de temperaturas, los sensores basados en silicio pueden simplificar notablemente el diseño, mantener la precisión e integrar funciones que aumenten la flexibilidad y las prestaciones del sistema.

Referencias

-    Nota de Aplicación de Microchip Technology AN897, “Thermistor Temperature Sensing with MCP6S2X PGAs,” de Kumen Blake y Steven Bible.
-    Nota de Aplicación de Microchip Technology AN895, “Oscillator Circuits for RTD Temperature Sensors,” de Ezana Haile y Jim Lepkowski.
-    Nota de Aplicación de Microchip Technology AN1001, “IC Temperature Sensor Accuracy Compensation with a PIC® Microcontroller,” de Ezana Haile.
-    Nota de Aplicación de Microchip Technology AN1154, “Precision RTD Instrumentation for Temperature Sensing,” de Ezana Haile.
-    “Temperature Sensor Design Guide” de Microchip Technology, DS21895C.

Autor:

John Austin, Microchip Technology Inc.

Más información o presupuesto

Articulos Electrónica Relacionados

  • Fotocélula miniatura SICK W4F SICK lanza al mercado la fotocélula miniatura W4F. La compañía acaba de presentar una nueva plataforma ASIC para dotar a esta gama de productos de numerosas ven... Sensores

Redes Sociales

Edicion Revista Impresa

1ww   

Para recibir la edición impresa o en PDF durante 1 año (10 ediciones)

Suscripción papel: 180,00.- €  (IVA inc.)

Suscripción PDF: 60,00.- € (IVA inc)

Noticias Populares Electrónica

Kit de evaluación para sensores de nivel

En el mundo de la automatización industrial y la sensórica, la medición precisa de los niveles de llenado representa un reto continuo. EBE...

Módulo de detección de corriente residual tipo B - Serie TLBxx-D3

La mayoría de las soluciones de protección diferencial disponibles en el mercado utilizan un módulo de protección diferencial tipo A + CC. Sin...

Sensor de corriente para aplicaciones de alta potencia en automoción

La transición a una economía descarbonizada se está acelerando con rapidez y la demanda de tecnologías innovadoras está aumentando para impulsar la...

Los sensores IR 12 veces más sensibles de Phlux transforman el rendimiento de LiDAR, telémetros y pruebas de fibra óptica

Phlux Technology, fabricante de sensores infrarrojos de fotodiodo de avalancha (APD), anuncia sus primeros productos, la familia Aura de...

Noticias Electrónica Profesional

Noticias Fuentes de Alimentación

Sensores de presión de montaje en placa ABP2 de Honeywell

Los sensores de presión de montaje en placa ABP2 de Honeywell son sensores de presión de silicio...

ABB Ability™ Smart Sensor

ABB presenta su Smart Sensor para máquinas giratorias que funcionan en zonas peligrosas. Ahora,...

Acelerómetros analógicos KX220 con ancho de banda hasta +/

Kionix anuncia la serie de sensores KX220, una nueva familia de acelerómetros analógicos...

Actualidad Electrónica Profesionales

Sensores de presión de montaje en placa ABP2 de Honeywell

Los sensores de presión de montaje en placa ABP2 de Honeywell son sensores de presión de silicio...

ABB Ability™ Smart Sensor

ABB presenta su Smart Sensor para máquinas giratorias que funcionan en zonas peligrosas. Ahora,...

Acelerómetros analógicos KX220 con ancho de banda hasta +/

Kionix anuncia la serie de sensores KX220, una nueva familia de acelerómetros analógicos...

Convertronic

Revista © Convertronic Electrónica Profesional Española.Todos los derechos reservados GM2 Publicaciones Técnicas, S.L.
Tel.: +34 91 706 56 69
Poema Sinfónico, 27. Esc B. Planta 1 Pta 5
28054 (Madrid - SPAIN)
e-mail: gm2@gm2publicacionestecnicas.com ó consultas@convertronic.net

Suscríbete a nuestro boletín de noticias

Revista Española de electrónica. Impresa desde hace más de 25 años.

España - Madrid - Todos los derechos reservados Revista © Convertronic Electrónica Profesional Española
TIC FREAK COMPANY OnServices Sistemas

Search