Tecnología

Ingenieros del MIT diseñan "esqueletos" blandos y flexibles para robots musculares

Inicio desactivadoInicio desactivadoInicio desactivadoInicio desactivadoInicio desactivado
 

Nuestros músculos son los actuadores perfectos de la naturaleza: dispositivos que transforman la energía en movimiento. Por su tamaño, las fibras musculares son más potentes y precisas que la mayoría de los actuadores sintéticos. Incluso pueden curarse de los daños y fortalecerse con el ejercicio.

Por estas razones, los ingenieros están estudiando formas de alimentar robots con músculos naturales. Han demostrado un puñado de robots "biohíbridos" que utilizan actuadores musculares para impulsar esqueletos artificiales que caminan, nadan, bombean y agarran. Pero cada robot tiene una estructura muy diferente y no existe un plan general para sacar el máximo partido de los músculos.

Ahora, los ingenieros del MIT han desarrollado un dispositivo similar a un muelle que podría utilizarse como módulo esquelético básico para casi cualquier robot con músculos. El nuevo muelle, o "flexor", está diseñado para sacar el máximo partido de cualquier tejido muscular acoplado. Al igual que una prensa de piernas con el peso justo, el dispositivo maximiza la cantidad de movimiento que un músculo puede producir de forma natural.

Los investigadores descubrieron que cuando ajustaban un anillo de tejido muscular al dispositivo, de forma parecida a una goma elástica estirada alrededor de dos postes, el músculo tiraba del muelle, de forma fiable y repetida, y lo estiraba cinco veces más, en comparación con otros diseños de dispositivos anteriores.

El equipo considera el diseño de la flexión un nuevo bloque de construcción que puede combinarse con otras flexiones para construir cualquier configuración de esqueletos artificiales. A continuación, los ingenieros pueden dotar a los esqueletos de tejidos musculares para impulsar sus movimientos.

"Estas flexiones son como un esqueleto que ahora se puede utilizar para convertir el accionamiento muscular en múltiples grados de libertad de movimiento de forma muy predecible", afirma Ritu Raman, Catedrática de Desarrollo Profesional en Diseño de Ingeniería Brit y Alex d'Arbeloff del MIT. "Estamos dando a los roboticistas un nuevo conjunto de reglas para fabricar robots potentes y precisos impulsados por músculos que hagan cosas interesantes".

Raman y sus colegas informan de los detalles del nuevo diseño de la flexión en un artículo que aparece en la revista Advanced Intelligent Systems. Entre los coautores del estudio en el MIT se encuentran Naomi Lynch (12), SM (23), la estudiante Tara Sheehan, los estudiantes de posgrado Nicolas Castro, Laura Rosado y Brandon Rios, y el profesor de ingeniería mecánica Martin Culpepper.

Tirón muscular

Cuando se deja solo en una placa de Petri en condiciones favorables, el tejido muscular se contrae por sí solo, pero en direcciones que no son del todo predecibles ni de mucha utilidad.

"Si el músculo no está sujeto a nada, se moverá mucho, pero con una enorme variabilidad, de modo que sólo se agitará en el líquido", explica Raman.

Para conseguir que un músculo funcione como un actuador mecánico, los ingenieros suelen fijar una banda de tejido muscular entre dos pequeños postes flexibles. Cuando la banda muscular se contrae de forma natural, puede doblar los postes y juntarlos, produciendo un movimiento que, idealmente, impulsaría parte de un esqueleto robótico. Pero en estos diseños, los músculos han producido un movimiento limitado, sobre todo porque los tejidos varían mucho en su contacto con los postes. Dependiendo de dónde se coloquen los músculos en los postes y de qué parte de la superficie muscular toque el poste, los músculos pueden conseguir unir los postes, pero otras veces pueden tambalearse de forma incontrolable.

El grupo de Raman trató de diseñar un esqueleto que concentrara y maximizara las contracciones de un músculo independientemente de dónde y cómo se colocara exactamente en el esqueleto, para generar el máximo movimiento de forma predecible y fiable.

"La pregunta es: ¿cómo diseñamos un esqueleto que utilice de la forma más eficiente la fuerza que genera el músculo?". afirma Raman.

Los investigadores consideraron primero las múltiples direcciones en las que un músculo puede moverse de forma natural. Pensaron que si un músculo tiene que tirar de dos postes en una dirección determinada, los postes deben estar conectados a un muelle que sólo les permita moverse en esa dirección al tirar de ellos.

"Necesitamos un dispositivo que sea muy blando y flexible en una dirección y muy rígido en todas las demás, de modo que cuando un músculo se contraiga, toda esa fuerza se convierta eficazmente en movimiento en una dirección", explica Raman.

Flexión suave

Raman encontró muchos de estos dispositivos en el laboratorio del profesor Martin Culpepper. El grupo de Culpepper en el MIT se especializa en el diseño y fabricación de elementos de maquinaria, como actuadores en miniatura, cojinetes y otros mecanismos, que pueden incorporarse a máquinas y sistemas para permitir movimientos, mediciones y controles ultraprecisos en una amplia variedad de aplicaciones. Entre los elementos mecanizados de precisión del grupo se encuentran las flexiones, dispositivos similares a muelles, a menudo fabricados a partir de vigas paralelas, que pueden flexionarse y estirarse con precisión nanométrica.

"Dependiendo de lo finas y separadas que estén las vigas, se puede cambiar la rigidez del muelle", explica Raman.

Ella y Culpepper se asociaron para diseñar una flexión específicamente adaptada con una configuración y rigidez que permitieran al tejido muscular contraerse de forma natural y estirar al máximo el muelle. El equipo diseñó la configuración y las dimensiones del dispositivo basándose en numerosos cálculos que realizaron para relacionar las fuerzas naturales de un músculo con la rigidez y el grado de movimiento de una flexión.

La flexión que finalmente diseñaron es 1/100 la rigidez del propio tejido muscular. El dispositivo se asemeja a una estructura en miniatura en forma de acordeón, cuyas esquinas están sujetas a una base subyacente por un pequeño poste, que se asienta cerca de un poste vecino que se ajusta directamente a la base. A continuación, Raman enrolló una banda de músculo alrededor de los dos postes de las esquinas (el equipo moldeó las bandas a partir de fibras musculares vivas que cultivaron a partir de células de ratón) y midió lo cerca que se acercaban los postes al contraerse la banda muscular.

El equipo descubrió que la configuración de la flexión permitía a la banda muscular contraerse principalmente en la dirección entre los dos postes. Esta contracción concentrada permitía al músculo acercar mucho más los postes -cinco veces más- que los anteriores diseños de actuadores musculares.

"La flexión es un esqueleto que diseñamos para que fuera muy blando y flexible en una dirección y muy rígido en las demás", explica Raman. "Cuando el músculo se contrae, toda la fuerza se convierte en movimiento en esa dirección. Es un aumento enorme".

El equipo descubrió que podía utilizar el dispositivo para medir con precisión el rendimiento y la resistencia musculares. Cuando variaron la frecuencia de las contracciones musculares (por ejemplo, estimulando las bandas para que se contrajeran una vez frente a cuatro veces por segundo), observaron que los músculos se "cansaban" a frecuencias más altas y no generaban tanta tracción. 

"Observar lo rápido que se cansan nuestros músculos y cómo podemos ejercitarlos para que tengan respuestas de alta resistencia es lo que podemos descubrir con esta plataforma", afirma Raman.

Los investigadores están adaptando y combinando flexiones para construir robots precisos, articulados y fiables, impulsados por músculos naturales.

"Un ejemplo de robot que estamos intentando construir en el futuro es un robot quirúrgico que pueda realizar procedimientos mínimamente invasivos dentro del cuerpo", dice Raman. "Técnicamente, los músculos pueden propulsar robots de cualquier tamaño, pero nos entusiasma especialmente la fabricación de robots pequeños, ya que es aquí donde los actuadores biológicos sobresalen en términos de fuerza, eficacia y adaptabilidad."

###

Escrito por Jennifer Chu, MIT News

Articulos Electrónica Relacionados

Redes Sociales

Edicion Revista Impresa

1ww   

Para recibir la edición impresa o en PDF durante 1 año (10 ediciones)

Suscripción papel: 180,00.- €  (IVA inc.)

Suscripción PDF: 60,00.- € (IVA inc)

Noticias Populares Electrónica

Más allá del Convenio de Estocolmo: nueva normativa sobre sustancias químicas para siempre

La firma del Convenio de Estocolmo sobre Contaminantes Orgánicos Persistentes (COP) en 2001 marcó un momento histórico, ya que fue el primer tratado mundial...

Chip para salvaguardar los datos de los usuarios y computación eficiente en un smartphone

Las aplicaciones de seguimiento de la salud pueden ayudar a las personas a controlar enfermedades crónicas o a mantenerse en forma sin más ayuda que...

La unión híbrida 3D Cu-Cu en la alimentación de los futuros productos de HPC e IA

El encapsulado de semiconductores ha evolucionado desde los tradicionales niveles 1D de las placas de circuito impreso hasta la unión híbrida 3D de...

Potencial de las proyecciones holográficas en los Heads-Up Displays de automoción

Las pantallas de visualización frontal (HUD) para automóviles están siendo recibidas con gran entusiasmo. El aumento del uso de la tecnología...

Noticias Electrónica Profesional

Noticias Fuentes de Alimentación

Cooperación tecnológica por el bienestar y la protecció

Cuando pensamos en cargadores de baterías nos vienen a la cabeza muchas aplicaciones posibles:...

Gestión térmica en 2020

La gestión térmica es una consideración crítica para muchas tecnologías y mercados, desde los...

¿Cambiar a tecnología de baterías de estado sólido?

Se espera que los vehículos eléctricos incluyan baterías de estado sólido como un enfoque...

Actualidad Electrónica Profesionales

Cooperación tecnológica por el bienestar y la protecció

Cuando pensamos en cargadores de baterías nos vienen a la cabeza muchas aplicaciones posibles:...

Gestión térmica en 2020

La gestión térmica es una consideración crítica para muchas tecnologías y mercados, desde los...

¿Cambiar a tecnología de baterías de estado sólido?

Se espera que los vehículos eléctricos incluyan baterías de estado sólido como un enfoque...

Convertronic

Revista © Convertronic Electrónica Profesional Española.Todos los derechos reservados GM2 Publicaciones Técnicas, S.L.
Tel.: +34 91 706 56 69
Poema Sinfónico, 27. Esc B. Planta 1 Pta 5
28054 (Madrid - SPAIN)
e-mail: gm2@gm2publicacionestecnicas.com ó consultas@convertronic.net

Suscríbete a nuestro boletín de noticias

Revista Española de electrónica. Impresa desde hace más de 25 años.

España - Madrid - Todos los derechos reservados Revista © Convertronic Electrónica Profesional Española.

Search