Thermal Management para la disipación de calor y mejora de la vida útil de los semiconductores.
La vida útil de los dispositivos semiconductores utilizados en los sistemas electrónicos está directamente relacionada con la temperatura a la cual están sometidos. De hecho, reducir un 10% la temperatura de unión del dispositivo, en términos aproximados, puede doblar la esperanza de vida del mismo.
Cada vez es mayor la compactación de los dispositivos electrónicos para satisfacer la demanda del mercado de mayor miniaturización y portabilidad.
Otro factor importante es la alta frecuencia de señal en muchos dispositivos, factor que relacionado con las corrientes que fluyen a través de los mismos, aumenta la potencia de disipación. Además, la mayor integración de los dispositivos semiconductores genera una mayor densidad de calor por unidad de superficie, y la necesidad de extraerlo del dispositivo se hace primordial para la vida del mismo.
El factor clave para conducir fuera del dispositivo el calor generado por el semiconductor es reducir al máximo la resistencia térmica, que existe entre la unión del dispositivo y el ambiente aire. Como si de un circuito se tratara, existe una red de resistencias térmicas en serie entre la unión del semiconductor y el aire. Tal como muestra el siguiente esquema, el circuito que recorre la temperatura desde el interior del dispositivo (Tj), hacia fuera (Ta), está compuesto por:
- Resistencia térmica entre la unión Tj y el encapsulado Tc del semiconductor (RthG), expresada en ºK/W (Grados Kelvin / Vatio). Esta resistencia viene determinada por el fabricante del semiconductor y es característica del proceso de fabricación del mismo. No es posible reducirla, a no ser que se escoja otro dispositivo semiconductor.
- Resistencia térmica entre el encapsulado Tc del semiconductor y el dispositivo disipador Ts (HeatSink) (RthG/K), expresada en ºK/W. Puede ser minimizada utilizando grasas, compuestos y otros Thermal Transfers que veremos a continuación.
- Resistencia térmica entre el disipador Ts y el ambiente Ta (RthK), expresada en ºK/W. Usando esta variable en el datasheet del fabricante se elige el disipador a utilizar. Es importante escoger un disipador que tenga una RthK inferior al valor obtenido mediante cálculos de diseño. Es inversamente proporcional al producto entre el coeficiente de transferencia de calor por convección (hc)(capacidad para disipar del disipador) y el área del mismo (A).
A su vez, hc es diferente para convención natural o convección forzada (ayudando en la disipación mediante ventiladores o blowers). En este artículo únicamente se contemplan los cálculos para convención natural.
De esta forma, la resistencia térmica total que se encuentra el calor al intentar ser disipado es:
RthTot = RthG + RthG/K + RthK
RthTot puede ser reducida al disminuir la suma de los términos que la componen.
La importancia de utilizar dispositivos disipadores de calor reside en que el aire es muy mal conductor del calor. La utilización de dispositivos disipadores puede reducir la resistencia térmica drásticamente, permitiendo así disipar más potencia.
La metodología de diseño se
basa en:
1) Conocer la temperatura ambiente Ta (ºK) y la temperatura de la unión del semiconductor Tj (ºK)(extraída del datasheet del fabricante). Al valor Tj le restaremos 25ºK como margen de seguridad, ya que Tj nunca deberá ser superada.
2) Conocer RthG del datasheet del fabricante del semiconductor.
3) Conocer la potencia (W) disipada por el semiconductor (Ptot). En transistores puede ser Ptot=Vce · Ic + Vbe · Ib y en diodos Ptot=If · Vf
4) Conocer criterios de diseño como el espacio disponible sobre el encapsulado, placa, posibilidad de ensamblaje, etc.
La siguiente fórmula relaciona, en un semiconductor acoplado a un disipador, la potencia disipada por un dispositivo y la diferencia de temperatura entre la unión Tj y el ambiente Ta.
Como se ha comentado anteriormente, disminuir la suma de resistencias térmicas aumenta la potencia total que puede disipar el dispositivo para un incremento de temperatura dado.
Reescribiendo esta función se puede saber la resistencia térmica máxima que pueden tener un disipador más la sustancia o fluido que haga de interfaz con el encapsulado del semiconductor.
Así pues, nos deja dos incógnitas cuya suma no ha de superar el valor derecho de la igualdad.
El aire, como interfaz entre el encapsulado y el disipador, tiene una resistividad térmica RthG/K muy elevada, ya que es un mal conductor del calor, en cambio un compuesto que haga de interfaz térmica puede reducir esta resistencia térmica en varios órdenes de magnitud y optimizar así la transferencia de calor.
Schlegel Electronic Materials posee varios modelos de la serie OpTIM Thermal Management Solutions con muy baja RthG/K y permitiendo además distintas configuraciones:
Para más información acerca de los diferentes compuestos con sus conductividades térmicas puede dirigirse a la página web de Schlegel:
http://www.schlegelemi.com/thermal
También puede acceder a diferentes catálogos en PDF colgados en la web www.rcmicro.es
http://www.rcmicro.es/pdf/catalogos/Schlegel_TIM_shortform.pdf
http://www.rcmicro.es/pdf/catalogos/SCHLEGEL_Thermal Materials.pdf
http://www.rcmicro.es/pdf/catalogos/SCHLEGEL_OP-400.pdf
http://www.rcmicro.es/pdf/catalogos/Schlegel_OpTIM_2012.pdf
En el siguiente ejemplo se muestra la elección de un disipador para el transistor 2 N 3055 con encapsulado TO-3 basándose en los datos arriba mencionados:
Suponiendo:
Tj = 200ºC menos 25 ºC de margen de seguridad = 175ºC
Ta = 45 ºC
RthG = 1.5 K/W
RthG/K = 0.2 K/W de la elección de un compuesto de interfaz térmica.
Ptot= 30W
Longitud máxima del disipador = 50 mm.
NOTA: Hay que tener en cuenta que los grados Kelvin y los grados Centígrados son equivalentes al hablar de incrementos de temperatura ya que 1ºK = 1ªC
Para elegir el disipador adecuado puede dirigirse al catálogo de ASSMANN, que dispone de un amplio portfolio de disipadores. Es necesario buscar aquellos que tengan resistencia térmica 2.6K/W o menos, ya que se asegura así una Tj inferior a 175ºC. También se ha de tener presente la restricción en longitud a 50mm y que viene marcada por las especificaciones del diseño de la aplicación. Una posible elección es el perfil V 4493 F de Assmann.
En los siguientes enlaces puede encontrar las diferentes familias de radiadores y accesorios de Assmann:
http://www.rcmicro.es/pdf/catalogos/Assmann_Radiadores_Componentes_PCB_1.zip
http://www.rcmicro.es/pdf/catalogos/Assmann_Radiadores_Componentes_PCB_3.zip
http://www.rcmicro.es/pdf/catalogos/Assmann_Radiadores_Componentes_PCB_4.zip
http://www.rcmicro.es/pdf/catalogos/Assmann_Radiadores_Perfiles.zip
http://www.rcmicro.es/pdf/catalogos/Assmann_Pastas_y_Accesorios_Montaje_Radiadores.pdf
Articulos Electrónica Relacionados
- Proceso de fundición a presión... El proceso HDDC de Aavid Thermalloy permite la obtención de una fuerte unión mecánica entre los diferentes materiales con un contacto &iacu...
- Gel coat en polvo con propieda... El sector del automóvil se enfrenta a una legislación cada vez más restrictiva respecto a las emisiones de CO2, un contexto en el que los m...
- Bioplastico para aparatos elec... Tras 48 meses de intensa investigación, el proyecto europeo BUGWORKERS concluirá con éxito el próximo mes de junio. Bajo la coordinación de AIMPLAS, los 14 miem...
- Ventiladores y extractores de ... El Grupo de Gestión Térmica de CUI Devices ha anunciado la reciente ampliación de su línea de productos de ventiladores y extractores de corriente continua con ...
- Ventiladores centrífugos CC pa... CUI Thermal Management Group ha anunciado la presentación de su línea CBM de ventiladores centrífugos CC con tamaños de bastidor de ...
- Ventiladores de filtro para re... Karl Kruse GmbH y ORION FANS presentan productos para la refrigeración de armarios de distribución, adaptados a su sector y sus necesidades.Ventil...
- Materiales térmicos adhesivos ... Mecter presenta la familia de materiales térmicos adhesivos TIA™800AL de ZIITEK. Se trata de un PSA (Pressure Sensitive Adhesive) formado de aluminio y con adhe...
- Elementos de ventilación Autom... Existen muchas formas de protección frente a diferencias de presión. Una solución común, pero muy costosa, es el uso de una carcasa de paredes gruesas con sella...
- Resistencia Calefactora Plana ... El interior de las envolventes está cada vez más equipado con componentes eléctricos y electrónicos. En consecuencia, el espacio libre para colocar los disposit...
- Lubricantes para husillos de a... Cada vez es mayor la industria que utiliza máquina- herramienta de precisión con husillos de alta velocidad. Con estos ejes, es posible alcanzar f...
- Enfriadora de freecooling adia... Emerson Network Power, una empresa de Emerson ha anunciado la disponibilidad en Europa, Oriente Medio y África de la primera enfriadora de freecooling adiabátic...
- Conductor Térmico Q-Bridge de ... RC Microelectrónica, distribuidor para España y Portugal de AVX Corporation presenta el nuevo conductor térmico Q-Bridge de ATC, una empresa de AVX. El nuevo co...