Thermal Management para la disipación de calor y mejora de la vida útil de los semiconductores.
La vida útil de los dispositivos semiconductores utilizados en los sistemas electrónicos está directamente relacionada con la temperatura a la cual están sometidos. De hecho, reducir un 10% la temperatura de unión del dispositivo, en términos aproximados, puede doblar la esperanza de vida del mismo.
Cada vez es mayor la compactación de los dispositivos electrónicos para satisfacer la demanda del mercado de mayor miniaturización y portabilidad.
Otro factor importante es la alta frecuencia de señal en muchos dispositivos, factor que relacionado con las corrientes que fluyen a través de los mismos, aumenta la potencia de disipación. Además, la mayor integración de los dispositivos semiconductores genera una mayor densidad de calor por unidad de superficie, y la necesidad de extraerlo del dispositivo se hace primordial para la vida del mismo.
El factor clave para conducir fuera del dispositivo el calor generado por el semiconductor es reducir al máximo la resistencia térmica, que existe entre la unión del dispositivo y el ambiente aire. Como si de un circuito se tratara, existe una red de resistencias térmicas en serie entre la unión del semiconductor y el aire. Tal como muestra el siguiente esquema, el circuito que recorre la temperatura desde el interior del dispositivo (Tj), hacia fuera (Ta), está compuesto por:
- Resistencia térmica entre la unión Tj y el encapsulado Tc del semiconductor (RthG), expresada en ºK/W (Grados Kelvin / Vatio). Esta resistencia viene determinada por el fabricante del semiconductor y es característica del proceso de fabricación del mismo. No es posible reducirla, a no ser que se escoja otro dispositivo semiconductor.
- Resistencia térmica entre el encapsulado Tc del semiconductor y el dispositivo disipador Ts (HeatSink) (RthG/K), expresada en ºK/W. Puede ser minimizada utilizando grasas, compuestos y otros Thermal Transfers que veremos a continuación.
- Resistencia térmica entre el disipador Ts y el ambiente Ta (RthK), expresada en ºK/W. Usando esta variable en el datasheet del fabricante se elige el disipador a utilizar. Es importante escoger un disipador que tenga una RthK inferior al valor obtenido mediante cálculos de diseño. Es inversamente proporcional al producto entre el coeficiente de transferencia de calor por convección (hc)(capacidad para disipar del disipador) y el área del mismo (A).
A su vez, hc es diferente para convención natural o convección forzada (ayudando en la disipación mediante ventiladores o blowers). En este artículo únicamente se contemplan los cálculos para convención natural.
De esta forma, la resistencia térmica total que se encuentra el calor al intentar ser disipado es:
RthTot = RthG + RthG/K + RthK
RthTot puede ser reducida al disminuir la suma de los términos que la componen.
La importancia de utilizar dispositivos disipadores de calor reside en que el aire es muy mal conductor del calor. La utilización de dispositivos disipadores puede reducir la resistencia térmica drásticamente, permitiendo así disipar más potencia.
La metodología de diseño se
basa en:
1) Conocer la temperatura ambiente Ta (ºK) y la temperatura de la unión del semiconductor Tj (ºK)(extraída del datasheet del fabricante). Al valor Tj le restaremos 25ºK como margen de seguridad, ya que Tj nunca deberá ser superada.
2) Conocer RthG del datasheet del fabricante del semiconductor.
3) Conocer la potencia (W) disipada por el semiconductor (Ptot). En transistores puede ser Ptot=Vce · Ic + Vbe · Ib y en diodos Ptot=If · Vf
4) Conocer criterios de diseño como el espacio disponible sobre el encapsulado, placa, posibilidad de ensamblaje, etc.
La siguiente fórmula relaciona, en un semiconductor acoplado a un disipador, la potencia disipada por un dispositivo y la diferencia de temperatura entre la unión Tj y el ambiente Ta.
Como se ha comentado anteriormente, disminuir la suma de resistencias térmicas aumenta la potencia total que puede disipar el dispositivo para un incremento de temperatura dado.
Reescribiendo esta función se puede saber la resistencia térmica máxima que pueden tener un disipador más la sustancia o fluido que haga de interfaz con el encapsulado del semiconductor.
Así pues, nos deja dos incógnitas cuya suma no ha de superar el valor derecho de la igualdad.
El aire, como interfaz entre el encapsulado y el disipador, tiene una resistividad térmica RthG/K muy elevada, ya que es un mal conductor del calor, en cambio un compuesto que haga de interfaz térmica puede reducir esta resistencia térmica en varios órdenes de magnitud y optimizar así la transferencia de calor.
Schlegel Electronic Materials posee varios modelos de la serie OpTIM Thermal Management Solutions con muy baja RthG/K y permitiendo además distintas configuraciones:
Para más información acerca de los diferentes compuestos con sus conductividades térmicas puede dirigirse a la página web de Schlegel:
http://www.schlegelemi.com/thermal
También puede acceder a diferentes catálogos en PDF colgados en la web www.rcmicro.es
http://www.rcmicro.es/pdf/catalogos/Schlegel_TIM_shortform.pdf
http://www.rcmicro.es/pdf/catalogos/SCHLEGEL_Thermal Materials.pdf
http://www.rcmicro.es/pdf/catalogos/SCHLEGEL_OP-400.pdf
http://www.rcmicro.es/pdf/catalogos/Schlegel_OpTIM_2012.pdf
En el siguiente ejemplo se muestra la elección de un disipador para el transistor 2 N 3055 con encapsulado TO-3 basándose en los datos arriba mencionados:
Suponiendo:
Tj = 200ºC menos 25 ºC de margen de seguridad = 175ºC
Ta = 45 ºC
RthG = 1.5 K/W
RthG/K = 0.2 K/W de la elección de un compuesto de interfaz térmica.
Ptot= 30W
Longitud máxima del disipador = 50 mm.
NOTA: Hay que tener en cuenta que los grados Kelvin y los grados Centígrados son equivalentes al hablar de incrementos de temperatura ya que 1ºK = 1ªC
Para elegir el disipador adecuado puede dirigirse al catálogo de ASSMANN, que dispone de un amplio portfolio de disipadores. Es necesario buscar aquellos que tengan resistencia térmica 2.6K/W o menos, ya que se asegura así una Tj inferior a 175ºC. También se ha de tener presente la restricción en longitud a 50mm y que viene marcada por las especificaciones del diseño de la aplicación. Una posible elección es el perfil V 4493 F de Assmann.
En los siguientes enlaces puede encontrar las diferentes familias de radiadores y accesorios de Assmann:
http://www.rcmicro.es/pdf/catalogos/Assmann_Radiadores_Componentes_PCB_1.zip
http://www.rcmicro.es/pdf/catalogos/Assmann_Radiadores_Componentes_PCB_3.zip
http://www.rcmicro.es/pdf/catalogos/Assmann_Radiadores_Componentes_PCB_4.zip
http://www.rcmicro.es/pdf/catalogos/Assmann_Radiadores_Perfiles.zip
http://www.rcmicro.es/pdf/catalogos/Assmann_Pastas_y_Accesorios_Montaje_Radiadores.pdf
Articulos Electrónica Relacionados
- Soluciones de ventilación para... Los elementos de ventilación de Gore están provistos de una membrana de poro fino, fabricada en politetrafluroetileno expandido (ePTFE), que por una parte garan...
- Monitores de corriente diferen... Para asegurar una protección según los requisitos más exigentes, BENDER ha desarrollado los módulos de corriente diferencial sensibles a corrientes AC/DC de la ...
- Elemento de ventilación GORE® ... W. L. Gore & Associates anuncia el lanzamiento del elemento de ventilación compacto y discreto GORE® PolyVent XS, diseñado para integrarse...
- Estándar industrial JEDEC JEP1... Siemens Digital Industries Software ha anunciado hoy el establecimiento de la norma JEP181, un archivo neutro basado en XML de la JEDEC, que es el líder mundial...
- THERMAL DAMPER-CPAG de KITAGAW... RC Microelectrónica presenta esta lámina delgada que tiene tanto capacidad de absorción de impacto como de amortiguación de vibracio...
- Solución de refrigeración Heit... Kolbi anuncia la introducción en el mercado de HeiCool ECO, una solución de refrigeración enchufable de 1U y con un ahorro de energí...
- Material térmico de cambio de ... Bergquist Company ha ampliado su gama de materiales de gestión térmica de cambio de fase, incorporando el Hi-Flow 650P, especificado para el uso continuo con te...
- Bioplastico para aparatos elec... Tras 48 meses de intensa investigación, el proyecto europeo BUGWORKERS concluirá con éxito el próximo mes de junio. Bajo la coordinación de AIMPLAS, los 14 miem...
- Ventiladores CC por rodamiento... Electrónica OLFER presenta los nuevos ventiladores CC de la serie CH de su representada PowerNex. Estos ventiladores por rodamientos nos ofrecen una solución de...
- Almohadilla térmica THERM-A-GA... La Chomerics Division de Parker Hannifin Corporation presenta THERM-A-GAP™ PAD 80LO, una almohadilla térmica de alto rendimiento con características de baja pur...
- Material térmico de alta durab... Gap Pad 1000HD, el nuevo material de Bergquist Company de alta durabilidad, combina la eficiencia térmica y mecánica del elastómero termo-conductor GapPad junto...
- Relé para vehículos eléctricos... Omron Electronic Components Europe ha presentado el relé de potencia CC de alta capacidad más pequeño y ligero del mundo, especialmente dirigido a coches híbrid...