Potencial de los sensores piezoeléctricos impresos
Los sensores de presión impresos son una tecnología consolidada, que se ha utilizado en aplicaciones como los sensores de ocupación de automóviles, los pianos eléctricos y algunos dispositivos médicos. Hasta la fecha, estos sensores siempre se han basado en materiales piezoresistivos, en los que la aplicación de presión aumenta la conductividad. En cambio, a pesar de la gran cantidad de I+D, los sensores piezoeléctricos impresos, en los que la aplicación de presión produce un voltaje, han tenido hasta ahora dificultades para penetrar en el mercado.
Sin embargo, a pesar de su falta de éxito comercial, los sensores piezoeléctricos impresos ofrecen algunas ventajas claras sobre sus homólogos piezoresistivos. A medida que mejoren las técnicas de fabricación y el análisis algorítmico de datos para extraer información de las mediciones de alta frecuencia, ¿podrían los sensores piezoeléctricos estar finalmente cerca de la adopción comercial?
Características distintivas
Al ser impresos y flexibles, tanto los sensores piezoeléctricos como los piezoresistivos presentan múltiples ventajas respecto a los sensores de presión inorgánicos. Son ligeros y rentables para producir en una gran superficie, lo que facilita la detección de la presión resuelta espacialmente. Además, su formato de película fina permite instalar los sensores en lugares en los que los basados en materiales rígidos pueden tener dificultades.
Sin embargo, hay algunas diferencias clave entre los tipos de sensores. Los sensores piezorresistivos son relativamente sencillos de fabricar: una capa de "resistencia sensible a la fuerza (FSR)" compuesta por partículas conductoras incrustadas en una matriz elastomérica proporciona una vía conductora dependiente de la presión entre dos electrodos apilados verticalmente o interdigitados. Estos sensores utilizan materiales de bajo coste, técnicas de fabricación sencillas y son relativamente fáciles de calibrar.
En cambio, los sensores piezoeléctricos impresos se basan en polímeros piezoeléctricos como el PVDF:TRFE que al solidificarse forman dominios cristalinos con dipolos. El sondeo con un campo eléctrico alinea los dipolos de estos dominios, produciendo un material piezoeléctrico. Este paso adicional de fabricación, junto con un proceso de calibración más difícil, significa que los sensores piezoresistivos han seguido siendo hasta ahora la opción dominante para los sensores de presión impresos.
Sin embargo, a pesar de estos inconvenientes, los sensores piezoeléctricos impresos tienen algunas ventajas claras. Entre ellas, la capacidad de detectar vibraciones de alta frecuencia, ya que se requiere mucha menos deformación que los materiales piezoresistivos, puesto que no es necesario comprimir los elastómeros. Además, como los sensores piezoeléctricos generan un pequeño voltaje en respuesta a la compresión, necesitan muy poca energía. De hecho, si las mediciones y las subsiguientes comunicaciones inalámbricas son relativamente infrecuentes, los sensores piezoeléctricos pueden cosechar suficiente energía para alimentarse a sí mismos.
Aplicaciones prometedoras
Aunque los sensores piezoeléctricos impresos han tenido hasta ahora dificultades para penetrar en el mercado, poco a poco están ganando adeptos para aplicaciones que requieren su característica distintiva clave: la capacidad de detectar vibraciones de alta frecuencia.
Una de sus aplicaciones es la monitorización de la condición, con el objetivo de permitir el mantenimiento preventivo. La instalación de sensores piezoeléctricos de película fina en equipos industriales permite detectar las vibraciones, con cambios en la amplitud y la frecuencia que podrían indicar la existencia de piezas desgastadas. Un enfoque similar puede aplicarse también a grandes estructuras como puentes, túneles, etc., para avisar con antelación de daños y posibles derrumbes.
Otra aplicación especialmente innovadora, desarrollada por el CEA-LITEN de Francia, utiliza dispositivos piezoeléctricos impresos para el control de las baterías. Un actuador piezoeléctrico impreso de película fina produce ondas de ultrasonido de alta frecuencia que viajan a través de la batería. A continuación, las detecta un sensor piezoeléctrico con una arquitectura muy similar. El seguimiento del tiempo de tránsito de las ondas y la dependencia de la frecuencia permiten controlar en tiempo real la densidad acústica y, por tanto, el estado de la batería.
Un último ejemplo es el uso de sensores piezoeléctricos para el control de la presión de los neumáticos, desarrollado por Joanneum Research en Austria a través de su marca Pyzoflex. En este caso, la característica principal no es la capacidad de detectar vibraciones de alta frecuencia, sino la capacidad de recolección de energía. Un sensor de película fina se coloca en el interior del neumático, y su escaso peso evita que la rueda se desequilibre. Recoge suficiente energía para enviar una señal inalámbrica con la presión cada 30 segundos, eliminando la necesidad de un complejo cableado en una pieza giratoria.
Articulos Electrónica Relacionados
- El crecimiento de sistemas ele... El informe IC Market Drivers 2018 clasifica las principales aplicaciones de uso final y su impacto en el crecimiento del mercado de CIs. Se pronostica que las v...
- Metodología que mejora la inte... Desarrollar una metodología que aproveche toda la información espectral proporcionada por los sensores remotos en diferentes bandas del espectro electromagnétic...
- SolarEdge adquiere al proveedo... • El proveedor líder de inversores solares SolarEdge anunció el 9 de mayo de 2018 su intención de adquirir Gamatronic, un fabricante d...
- MACOM y STMicroelectronics ace... MACOM Technology Solutions Holdings, Inc. y STMicroelectronics han anunciado la ampliación la capacidad de producción GaN-en-Silicio de 150 mm en 2019 en las ...
- Entrada en vigor de la directi... El 20 de abril de 2016 entró en vigor la nueva Directiva ATEX 2014/34/UE.ATEX proviene de la expresión francesa "ATmosphère EXplosibles". L...
- El proyecto ORPHEO finaliza co... El proyecto ORPHEO (Optimización, Rentabilidad, Plataformas, Híbridas, Energía eólica, Olas), cuyo objetivo es la combinación de la energía eólica offshore con ...
- El proyecto De-RISC de H2020 c... Tras un año de ejecución, De-RISC sigue abriéndose camino para impulsar futuras aplicaciones espaciales y aeronáuticas con tecnología hecha en Europa. Este pro...
- Proyecto AZMUD, materiales plá... El proyecto europeo AZMUD, coordinado por AIMPLAS, llega a su fase final y en su última anualidad, se comenzará la fase de validación en invernaderos piloto est...
- Vitesco Technologies y ROHM in... La división de motopropulsores de Continental, Vitesco Technologies, un proveedor para la electrificación de vehículos, y ROHM Semiconductor han firmado una soc...
- La unión híbrida 3D Cu-Cu en l... El encapsulado de semiconductores ha evolucionado desde los tradicionales niveles 1D de las placas de circuito impreso hasta la unión híbrida 3D de última gener...
- Los robots rastrean objetos en... El sistema usa etiquetas RFID para ubicarse en los objetivos; Podría beneficiar la fabricación robótica, drones colaborativos y otras aplicaciones. Un nuevo sis...
- La alta Sensibilidad y selecti... La llegada del Internet de las cosas (IoT), así como la demanda de los usuarios de mayor seguridad, tecnologías de asistencia no invasivas e indep...