Chip de autoaprendizaje Intel Loihi
Una mayor necesidad de recopilación, análisis y toma de decisiones utilizando para ello datos naturales, no estructurados y muy dinámicos está impulsando la demanda de un tipo de informática que puede dejar atrás las arquitecturas clásicas basadas en CPU y GPU. Para mantener el ritmo de la evolución de la tecnología y para impulsar la informática más allá de los PC y los servidores, Intel ha colaborado durante los últimos seis años en el desarrollo de arquitecturas especializadas que pueden acelerar las plataformas informáticas clásicas. Asimismo, también ha realizado recientemente más inversiones en I+D para inteligencia artificial (AI) y en informática neuromórfica.
Dentro de las acciones llevadas a cabo en los Intel Labs, Intel ha desarrollado el primer chip de autoaprendizaje neuromórfico de su categoría – el chip de pruebas Loihi – que imita las funciones del cerebro, aprendiendo a funcionar basándose en diferentes modos de respuesta ante los estímulos del entorno. Este chip de gran eficiencia energética utiliza datos para aprender y para realizar inferencias, se hace más inteligente a lo largo del tiempo, no necesita ser entrenado de una manera tradicional y adopta un enfoque novedoso en informática mediante unos potenciales de acción de actividad eléctrica (spikes) asíncronos.
Creemos que la AI se encuentra en su fase inicial y que más arquitecturas y métodos – como el chip Loihi – van a seguir surgiendo para elevar el nivel de la AI. La informática neuromórfica se inspira en el conocimiento actual de la arquitectura cerebral y de sus cómputos asociados. Las redes neuronales del cerebro obtienen información mediante impulsos eléctricos o potenciales de acción de actividad eléctrica, y modulan las fuerzas sinápticas o el peso de las interconexiones basándose en la duración de estos potenciales de acción, guardando estos cambios de forma local en las interconexiones. Las conductas inteligentes surgen de las interacciones cooperativas y competitivas entre múltiples zonas dentro de las redes neuronales del cerebro y de su entorno.
Los modelos de aprendizaje automático – como los del aprendizaje profundo – han experimentado grandes avances en tiempos recientes, mediante el uso de amplios conjuntos de datos para entrenamiento y reconocimiento de objetos y de eventos. Sin embargo, a menos que estos datos de entrenamiento hayan tenido en cuenta de forma específica un elemento, una situación o una circunstancia, estos sistemas se aprendizaje automático no generalizan bien.
Los beneficios potenciales de los chips de autoaprendizaje son infinitos. Un ejemplo proporciona la lectura del ritmo cardiaco de una persona en diferentes estados – después de correr, tras una comida o antes de acostarse – a un sistema neuromórfico que analiza los datos para determinar un ritmo “normal”. El sistema puede luego monitorizar permanentemente los datos procedentes del corazón para determinar patrones que no se ajustan al patrón “normal”. Este sistema puede personalizarse para cualquier usuario.
Este tipo de lógica puede aplicarse a otros casos de uso, como en la ciberseguridad, en donde una anormalidad o diferencia en los datos podría identificar accesos no autorizados, porque el sistema ha aprendido un patrón de “normalidad” en diferentes contextos.
Presentación del chip de pruebas Intel Loihi
El chip de pruebas de investigaciones Intel Loihi incluye unos circuitos digitales que imitan la mecánica básica del cerebro, agilizando e incrementando la eficiencia de la inteligencia artificial con menos potencia informática. Los modelos neuromórficos del chip se basan en las formas de comunicación y aprendizaje de las neuronas, utilizando para ello potenciales de acción de actividad eléctrica y en la plasticidad sináptica que pueden modularse basándose en su duración. De esta forma, se puede ayudar a los ordenadores a auto organizarse y tomar decisiones basándose en patrones y asociaciones.
El chip de pruebas Intel Loihi ofrece un aprendizaje flexible en el chip y combina entrenamiento e inferencias en un único chip. Esto permite a las máquinas ser autónomas y adaptarse en tiempo real, en vez de esperar a la siguiente actualización desde la nube.Los investigadores han demostrado un aprendizaje más de un millón de veces más rápidamente en comparación con otras redes neuronales de potenciales de acción de actividad eléctrica habituales, realizando esta valoración con el total de operaciones necesarias para lograr una precisión dada a la hora de resolver problemas de reconocimiento de dígitos usando la base de datos del MNIST. En comparación con tecnologías como las redes neuronales convolucionales y las redes neuronales de aprendizaje profundo, el chip de pruebas Intel Loihi emplea muchos menos recursos para la misma tarea.
Las capacidades para autoaprendizaje prototipadas por este chip de pruebas tienen un enorme potencial en la mejora de aplicaciones en el sector de la automoción, en la industria y en robótica personal – cualquier aplicación que pueda beneficiarse de operaciones autónomas y del aprendizaje continuo en un entorno no estructurado para, por ejemplo, el reconocimiento del movimiento de un vehículo o una bicicleta.
Además de esto, ahorra hasta 1.000 veces más energía que la informática para uso general que precisan los sistemas para entrenamiento habituales.
En el primer semestre de 2018, el chip de pruebas Intel Loihi se distribuirá a las más destacadas universidades e instituciones investigadoras para el desarrollo de tecnología para AI.
Aspectos destacados adicionales
Entre las prestaciones del chip de pruebas Loihi podemos destacar:
- Una red neuromórfica de múltiples núcleos totalmente asíncrona que ofrece soporte a una amplia gama de topologías de redes neuronales dispersas, jerárquicas y recurrentes, en donde cada neurona es capaz de comunicarse con otros miles de neuronas.
- Cada núcleo neuromórfico incluye un motor de aprendizaje que puede programarse para adaptarse a unos parámetros de red durante su funcionamiento, ofreciendo soporte a unos paradigmas de aprendizaje supervisados, no supervisados o de refuerzo (entre otros tipos).
- Ha sido fabricado con la tecnología de proceso de 14 nm de Intel.
- Cuenta con un total de 130.000 neuronas y 130 millones de sinapsis.
- El desarrollo y las pruebas de varios algoritmos con alta eficiencia algorítmica para resolución de problemas como la planificación de rutas, la satisfacción de restricciones, codificación aislada, aprendizaje de diccionario y aprendizaje y adaptación dinámicos de patrones.
Articulos Electrónica Relacionados
- Sistema embebido Barebone EPC-... Advantech presenta el sistema delgado barebone sin ventilación forzada EPC-S101 con procesador Intel® Celeron® N3160 / N3060 o Intel Atom® x5...
- Módulos de conversion en CA de... Las fuentes de alimentación o convertidores de CA a CC se utilizan en cada vez más aplicaciones emergentes, ya sean actuales o bien de nuevas demandas, Mornsun,...
- Placa base industrial Kontron ... Kontron presenta el mITX-CFL-S, una nueva placa base industrial en formato Mini-ITX basada en la octava generación de procesadors Intel®. Está disponible con lo...
- AIJU y AIMPLAS introducen la e... AIJU y AIMPLAS han desarrollado durante 2017 el proyecto FLEXENS para integrar soluciones de electrónica flexible en el sector del juguete para lograr pr...
- Investigadores diseñan un conv... El "Internet de las cosas" es la idea de que los vehículos, electrodomésticos, estructuras civiles, equipos de fabricación e incluso ganado...
- Materiales térmicos LAIRD Tfle... LAIRD, representada por Mecter, presenta esta familia de materiales térmicos que se utiliza en aplicaciones donde se necesite un grosor de 0,5 mm pudiendo llega...
- Microcontroladores Renesas RX2... Renesas Electronics Corporation ha anunciado la expansión de sus grupos RX24T y RX24U de microcontroladores de 32 bits (MCU) para incluir nuevos modelos toleran...
- INYCOM integra a Efinetika y a... Inycom ha integrado en su estructura a Efinetika. Efinetika nació en 2010 como una compañía especializada en ayudar a empresas y entidades a ser más competitiva...
- Procesador Intel® Xeon® W-31 Ya está disponible el procesador Intel® Xeon® W-3175X. Este procesador desbloqueado, con 28 núcleos ha sido creado para aplicaciones específicas, con múltiples ...
- Materíales térmicos Tgard de ... LAIRD ha lanzado los materiales térmicos TgardTM . Estos materiales surgieron como demanda a la necesidad de sustituir al uso de grasa y mica. La grasa por u...
- CUBE3+, SAI de Salicru totalme... Salicru presenta la nueva serie de Sistemas de Alimentación Ininterrumpida (SAI) para entornos profesionales, SLC CUBE3+. Con un rango de potencia de 7,5 a 200 ...
- Conectores CC SOLARLOK 2.0 par... TE Connectivity (TE) ha presentado sus conectores SOLARLOK 2.0., un producto instalable en campo que recurre a la tecnología IDC (contacto de desplazamiento de ...