Almacenamiento de energía mediante aire líquido
Un equipo de investigadores de la Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI) de la Universidad Politécnica de Madrid (UPM) ha realizado un estudio tecno-económico de la integración de la tecnología de almacenamiento de energía mediante aire líquido en la red eléctrica española, con el objetivo de impulsar la penetración de las renovables en España.
Los resultados obtenidos sugieren que este tipo de sistema de almacenamiento supone una alternativa competitiva frente a otros sistemas existentes, como el bombeo hidráulico, el aire comprimido o las baterías.
Uno de los mayores retos actuales a nivel global es limitar el calentamiento global y sus efectos. Los combustibles fósiles continúan dominando el mix energético. Sin embargo, el despliegue de energías renovables en los países de la Unión Europea es cada vez mayor a fin de lograr una economía neutra en emisiones de CO2 para el año 2050, en consonancia con el Acuerdo de París sobre el cambio climático.
La transición energética europea hacia la descarbonización se basa en hacer mayor uso de las energías renovables en la generación de electricidad. En España, se espera que la contribución de energías renovables alcance en 2030 el 74% de la generación total (Plan Nacional Integrado de Energía y Clima, PNIEC).
La integración de las energías renovables en la red eléctrica es un problema complejo debido a su carácter intermitente y a la variabilidad de la demanda. En España, por su carácter peninsular, se agrava el problema al estar aislada energéticamente de otros países. En este contexto, es imprescindible el almacenamiento del exceso de energía eléctrica renovable con el fin de asegurar la continuidad del suministro. En base a un estudio realizado, Irene Donoso Martín, una de las investigadoras del grupo, señala que “El almacenamiento de energía mediante aire líquido o LAES (Liquid Air Energy Storage) es una tecnología prometedora para equilibrar la oferta y la demanda de electricidad. Además de favorecer la penetración de las renovables, mejora su eficiencia al aprovechar excesos y reduce el impacto ambiental que supone la generación de energía eléctrica.”
El ciclo LAES consta de dos fases (imagen), la correspondiente al almacenamiento (carga) y la posterior de recuperación de energía (descarga).
En la fase de carga, la energía extraída de fuentes renovables se utiliza para licuar aire atmosférico que será almacenado a –190o C en un depósito aislado térmicamente. En la fase de descarga, parte de la energía almacenada es recuperada evaporando el aire y expandiéndolo en varias turbinas. Para incrementar la eficiencia del proceso de carga y descarga (y, en definitiva, del ciclo) se recupera, por un lado, parte del frío cedido por el aire en su proceso de evaporación. Este se almacena en un depósito con lecho compacto de rocas para ser utilizado más tarde en el proceso de enfriamiento del aire comprimido. Por otro lado, se aprovecha el calor extraído en la compresión mediante un aceite térmico que será utilizado más adelante para recalentar el aire antes de turbinarlo.
Frente a otras tecnologías de almacenamiento de energía, LAES presenta ventajas, como su elevada densidad energética (energía almacenada por unidad de volumen) y su escalabilidad. A diferencia del almacenamiento de energía por bombeo hidráulico y por aire comprimido, LAES no presenta restricciones geográficas ni ambientales; y permite almacenar más energía que las baterías.
El gran despliegue de la energía eólica y fotovoltaica esperado en España en los próximos años hará necesario almacenar energía durante la noche y descargarla durante las horas pico del día. Según el estudio realizado, los costes estimados de la electricidad y del almacenamiento son de 150 €/MWh y 50 €/MWh, respectivamente. “La tecnología LAES resulta una alternativa competitiva frente a otras, como las de bombeo hidráulico y aire comprimido. “Esperamos que los resultados de esta investigación tengan un impacto socio-económico que impulse el desarrollo de esta tecnología para mitigar los efectos del calentamiento global y la creación de nuevos puestos de trabajo en la industria energética” concluyen los investigadores.
Legrand, Mathieu; Rodríguez-Antón, Luis Miguel; Martínez-Arévalo, Carmen; Gutiérrez-Martín, Fernando. (2019). Integration of liquid air energy storage into the Spanish power grid. ENERGY 187. Article Number: UNSP 115965. DOI: 10.1016/j.energy.2019.115965
Articulos Electrónica Relacionados
- Producción en cadena de dispos... El proyecto MADRAS, coordinado por el centro tecnológico Eurecat, ha impulsado la producción en cadena de dispositivos electrónicos impresos incorporados en pie...
- Tejidos y plásticos inteligent... El centro tecnológico Eurecat muestra esta semana en la feria Automotive Interiors, en Stuttgart (Alemania), nuevas soluciones e innovaciones tecnológicas que i...
- Oportunidades para la electrón... La electrónica de fabricación aditiva es un enfoque emergente que lleva la electrónica impresa a la tercera dimensión. La impresión tanto del material estructur...
- Primer laboratorio industrial ... El mundo digital y las relaciones comerciales caminan de la mano desde hace más de una década y el nuevo reto al que se enfrentan es conseguir que...
- Los vehículos eléctricos se ha... La sofisticación del diseño y el desarrollo del motor en los automóviles está ahora en un cierto contraste con la aplicación ...
- La previsión del gasto de capi... IC Insights ha revisado sus perspectivas para el gasto de capital de la industria de semiconductores y presentó sus nuevos resultados en la actualizaci&o...
- El Comité del PICMG desarrolla... El PICMG anuncia la formación de un subcomité técnico para crear una nueva especificación de factor de forma PICMG llamada ModBlox7. Esta especificación transfo...
- Nueva temporada de videos sob... Digi-Key Electronics estrena una nueva temporada de su serie de videos “Cultivar de manera diferente”, que destaca el papel de las tecnologías de automatización...
- Soluciones sostenibles de elec... Hoy en día, se emplean metales escasos y materiales poco sostenibles en la fabricación de circuitos conductores para aparatos electrónicos. Con el objetivo de a...
- La unión híbrida 3D Cu-Cu en l... El encapsulado de semiconductores ha evolucionado desde los tradicionales niveles 1D de las placas de circuito impreso hasta la unión híbrida 3D de última gener...
- Vicor presentará cómo acelerar... Vicor mostrará su experiencia en 48V del 26 al 29 de junio impartiendo dos sesiones en la Automotive HV Power Supply Systems Conference de Munich. Tras el anunc...
- Celdas fotovoltaicas orgánicas... El centro tecnológico Eurecat desarrolla nuevos módulos fotovoltaicos orgánicos, flexibles y semitransparentes mediante electrónica impresa, que incorporan mate...