Un gran avance en la recolección de "energía azul"
El Premio HPCwire al "Mejor uso de HPC en energía" se adjudicó este año a un grupo de investigadores que han realizado importantes avances relacionados con la recolección de "energía azul". La misma tecnología también se puede utilizar como una forma eficiente de desalinizar el agua.
La energía azul, la energía gratuita que se pierde cuando el agua salada del mar y el agua dulce del río se unen y se mezclan en los estuarios, podrían convertirse en una fuente importante de electricidad mundial en el futuro. La mezcla capacitiva, una técnica prometedora que explota el ciclo de carga y descarga de los condensadores, se puede utilizar para recolectar esta energía, pero optimizar los dispositivos para esta tarea no es fácil.
Investigadores en Francia, liderados por Benjamin Rotenberg del Centro Nacional de Investigación Científica (CNRS) y Sorbonne Université en París, han demostrado que las simulaciones moleculares pueden predecir de manera realista la capacidad de los dispositivos que contienen materiales de carbono nanoporoso como los electrodos y el agua salada como el electrólito. Cuando se ejecuta a la inversa, esta técnica también es una forma eficiente de desalinizar el agua en un proceso conocido como desionización capacitiva.
El proyecto se llevó a cabo utilizando la supercomputadora MareNostrum en Barcelona y la supercomputadora Curie cerca de París.
Tanto en la mezcla capacitiva (CapMix) como en la desionización capacitiva (CDI), los electrodos hechos de carbono nanoporoso tienen una mayor área de superficie de contacto con el electrolito, lo que aumenta la capacidad específica del dispositivo. Los investigadores descubrieron previamente que la capacidad de los supercondensadores (también conocidos como condensadores de doble capa eléctricos o EDLC) aumenta inesperadamente cuando el tamaño de los poros de los electrodos de carbono derivados de carburo (CDC) utilizados en estos dispositivos de almacenamiento de energía disminuye hasta el tamaño de los iones de electrolitos. El problema es que estos dispositivos no se comportan como sugieren los modelos cuando el tamaño de los poros en el material alcanza este tamaño.
Descripción de la escala molecular.
"Nuestro punto de partida es una descripción a escala molecular de las moléculas de agua, los iones y los electrodos de carbono nanoporosos, con una representación simplificada de las interacciones entre ellos", explica el líder del equipo, Benjamin Rotenberg, del Centro Nacional de Investigación Científica (CNRS) de Francia y Sorbonne. Université en París. “Tenemos en cuenta dos características importantes: la estructura compleja del material del electrodo y su polarización por el electrolito cuando se aplica una tensión entre los electrodos.
"Luego procedemos a los" experimentos numéricos "y observamos la trayectoria de cada átomo / molécula en el sistema. A partir de los datos obtenidos, calculamos las propiedades que pueden compararse directamente con los resultados experimentales, por ejemplo, la capacidad de los dispositivos. Buen acuerdo entre los dos respalda nuestro modelo ".
En el contexto de la energía azul, los investigadores confían en dos teorías de la interfaz entre electrodos y electrolitos: las teorías de Debye-Huckël y Poisson-Boltzmann. Son muy útiles en muchos casos, por ejemplo, para electrodos planos o porosos con poros muy grandes. "Sin embargo, fallan en el presente caso de confinamiento extremo, en el que los efectos moleculares desempeñan un papel importante", dice Rotenberg.
Descripción más sencilla
En cuanto a CDI, otro modelo, el modelo de Donnan modificado se usa con frecuencia. "Esta es una descripción aún más simple del equilibrio entre los nanoporos y el electrolito a granel", explica Rotenberg. “Introduce parámetros efectivos que generalmente se ajustan para ajustarse a los datos experimentales.
“Si bien el uso de parámetros de la literatura para materiales similares no nos permite reproducir nuestros resultados experimentales en todas las condiciones, podemos obtener buenas predicciones ajustando los parámetros de un modelo de Donnan modificado para reproducir las simulaciones a altas concentraciones de sal de electrolito. De esta manera, podemos extrapolar las predicciones para disminuir las concentraciones de sal sin hacer ningún experimento real ".
Aunque no es ideal, los investigadores dicen que el enfoque les permite predecir bastante bien la capacidad experimental de sus dispositivos a concentraciones de sal más bajas.
Predicción fiable de la capacitancia
"Nuestro trabajo confirma que los electrodos de carbono nanoporosos, que ya están empleados en supercondensadores para almacenar energía, son prometedores tanto para CapMix como para CDI", dice Rotenberg a nanotechweb.org. “También demuestra que las simulaciones realistas de dinámica molecular son buenas para investigar los mecanismos fundamentales en juego en estos materiales. Y que las simulaciones se pueden usar para predecir de manera fiable la capacitancia, especialmente a altas concentraciones de sal ".
El equipo, que incluye científicos de la Universidad de Toulouse, en el marco de la red de investigación francesa sobre almacenamiento de energía electroquímica, RS2E, dice que ahora está ocupado simulando otras sales para abordar los efectos específicos de los iones.
“También estamos estudiando diferentes estructuras de carbono y desarrollando descripciones simples mejoradas que nos permitirán superar las deficiencias de nuestras simulaciones moleculares. "Desafortunadamente, su coste computacional todavía no nos permite simular el comportamiento de los electrolitos que tienen salinidades comparables a las del agua de río".
El éxito de esta investigación ha sido reconocido con el Premio HPCwire al "Mejor uso de HPC en energía". El premio se presentó conjuntamente a PRACE (Partnership for Advanced Computing in Europe), al Barcelona Supercomputing Center (BSC) y a la organización francesa de supercomputación GENCI en la Conferencia Internacional de Computación, Redes, Almacenamiento y Análisis de Alto Rendimiento (SC18) de 2018, en Dallas. Texas.
Articulos Electrónica Relacionados
- El proyecto Precitek trata de ... El centro tecnológico Tekniker ha liderado el proyecto Precitek con el reto de conseguir robots y máquinas-herramienta más precisos a través de tecnologías avan...
- Electrificación y automatizaci... Los vehículos eléctricos para la minería serán un mercado de 9.000 millones de dólares en 2028. Las compañías A...
- Nuevo estándar para sistemas e... Peter Müller, Vice President Product Center Boards & Modules en Kontron comenta sobre los antecedentes del desarrollo del nuevo estándar para módulos COM HP...
- Continúa la subida moderada en... Tras un año excelente en su conjunto y con buenas perspectivas de futuro, los fabricantes de máquinas herramienta y herramientas de precisió...
- Proyecto InnoTherMS de optimiz... El proyecto de investigación franco-alemán InnoTherMS tiene por objeto diseñar un sistema innovador de gestión térmica para vehículos eléctricos para hacer fren...
- AIJU y AIMPLAS introducen la e... AIJU y AIMPLAS han desarrollado durante 2017 el proyecto FLEXENS para integrar soluciones de electrónica flexible en el sector del juguete para lograr pr...
- La visión artificial acelera l... La detección de imágenes es una capacidad esencial, utilizada en múltiples aplicaciones que van desde las cámaras web y las cámaras de los smartphones hasta los...
- Proyecto ADAPTA para diseño y ... Tekniker lidera en el proyecto ADAPTA el diseño y desarrollo de soluciones de Inteligencia Artificial que, integradas en sistemas robóticos, permitan automatiza...
- Lanzamiento en Europa del proy... POLYNICES es un esfuerzo de investigación e innovación para proporcionar una plataforma de integración fotónica de uso general que cumpla todos los requisitos d...
- Nuevos estándares de eficienci... El pasado 1 de Julio entró en vigor el nuevo reglamento para las fuentes de alimentación que se comercialicen en la Unión Europea con el objetivo de establecer ...
- Proyecto AZMUD, materiales plá... El proyecto europeo AZMUD, coordinado por AIMPLAS, llega a su fase final y en su última anualidad, se comenzará la fase de validación en invernaderos piloto est...
- Un impulso para los robots tip... Cuando se trata de robots, lo más grande no siempre es lo mejor. Algún día, un enjambre de robots del tamaño de un insecto podría polinizar un campo de cultivo ...